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Abstract 

The number of orbiting objects is increasing at an ever-growing pace. Inevitably, this is also driving up the number of 

conjunction events, especially in LEO. This is forcing the Space Situational Awareness (SSA) actors to expand the 

proportion of automated tasks within their conjunction detection and analysis pipelines. During SSA providers’ 

nominal operations possible conjunctions are identified, tracked, assessed and, if necessary, a manoeuvre 

recommendation plan is created and iterated with the satellite operator along the event duration. The increasing 

workload of the conjunction analysis service and the growing number of satellite operators demanding this service, 

yields to the need to explore new techniques like Machine Learning (ML) to decrease the time needed during the 

tracking phase of a conjunction event, by anticipating its evolution. Thanks to the fact the S3TOC (Spanish SST 

Operations Centre) is one of the two operational centres in charge of the Collision Avoidance within the EU SST, 

working in a hot redundancy schema, a large number of detailed datasets has been generated over time with all the 

information along the conjunction events evolution being available. This has allowed to start research on ML 

algorithms and techniques considering the big quantity of data required. The work presented in this paper is focused 

into two main tasks: First, the determination of the probability of escalation or de-escalation of the risk level, which 

depends on the Probability of Collision (PoC). Therefore, during the event, attempts are made at anticipating whether 

it can be disregarded as a low-risk event or if it should be included on a watchlist in case its alert level is to be increased. 

Second, the prediction of the elements used to compute the PoC. The information of an event is updated along its 

duration through Conjunction Data Messages (CDMs). The CDMs contain all the information needed to compute the 

PoC such as the relative position between the objects and their covariances. In this second task, some of the elements 

in the CDM are predicted into the future, so that a future estimation of the PoC can be computed. This is just the 

beginning of the long journey of introducing Artificial Intelligence in the SSA field and S3TOC and EU SST are on-

board. 

 

Acronyms/Abbreviations 

CA: Conjunction Analysis 

CDM: Conjunction Data Message 

EU SST: European Union Space Surveillance and 

Tracking 

FN(R): False Negative (Rate) 

FP(R): False Positive (Rate) 

GEO: Geostationary Orbit 

IQR: Inter-Quartile Range 

LEO: Low Earth Orbit 

ML: Machine Learning 

PoC: Probability of Collision 

RL: Risk Level 

ROC curve: Receiver Operating Characteristic curve 

RSO: Resident Space Object 

RTN: Radial-Tangential-Normal 

S3TOC: Spanish Space Surveillance and Tracking 

Operational Centre 

SSA: Space Situational Awareness 

SST: Space Surveillance and Tracking 

TN(R): True Negative (Rate) 

TP(R): True Positive (Rate) 

 

1. Introduction 

In the frame of the Spanish Space Surveillance and 

Tracking (SST) activities, and in particular, in regards to 

the operations an analysis of conjunction events between 

space objects, the S3TOC is undertaking research 

activities aimed at optimizing the use of its resources. 

One of those initiatives is centred on the improvement of 

efficiency and reduction of human time devoted to 

conjunction analyses, so it can maintain and improve its 

collision risk assessment service jointly to the 

fragmentation and re-entry analysis services as part of the 

European SST consortium (EUSST). 
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In an SSA operational environment, particularly with 

the rapid increase of RSOs in recent times due to the 

launch of satellite constellations in LEO, close approach 

events (conjunction events) happen more and more often. 

When such event is detected, several processes get 

kicked off to ensure the conjunction will not resolve into 

a collision. CDMs are published periodically containing 

information about the event itself that allows for the 

computation of the PoC. These CDMs contain physical 

and orbital information about each of the objects 

involved in the CA event as well as information on the 

uncertainty of these values.  

Due to the workload increase resultant from the larger 

RSO population, there is an interest to resolve the 

conjunctions as early as possible without compromising 

reliability of the process. To that end, this work presents 

two applications of ML that tackle this problem. The first 

one provides an algorithm that predicts a future risk level 

change in the event. This way, it can be disregarded early 

or more resources can be devoted to it if the risk level is 

expected to decrease or increase respectively. The second 

application provides an algorithm that aims at improving 

the propagation made from the orbit determination 

performed with data available from SSA sensors to help 

provide a more reliable measure of the PoC. 

ML is a data-driven modelling technique from the 

field of Artificial Intelligence (AI) that has been booming 

in the last decade due to the digitization of the society, 

the availability of a multitude of data in all industrial 

sectors and the increase of computing capabilities. This, 

together with the possibility of extracting and 

recognizing patterns easily thanks to programmatic 

techniques such as ML, makes it very interesting to 

import them to a sector such as space, and in particular in 

the area of Space Situational Awareness (SSA). 

The high proliferation of space objects in orbits in 

recent years and the future prospect, make necessary the 

application of different mitigation strategies in 

cooperation with an exhaustive surveillance and tracking 

services of these objects, as provided by EUSST. 

Anything that can contribute to the improvement and 

automatization, and make these services provided more 

efficient should be definitely encourage. This includes, 

for example, the usage of ML techniques in some 

processes of the SST-chain, like sensor tasking and 

planning. 

ML techniques are mainly based on statistics and 

optimization. Through this, a base algorithm 

automatically adjusts a multitude of parameters to a 

previously selected and prepared set of data. This 

collection and preparation is, perhaps, the most important 

and difficult step of the process. If the data used is not 

good enough, the model will not be able to find an 

underlying pattern and could not be used with new 

similar examples (or samples) of that data. In other words, 

it will not be able to ‘learn’ from it. Therefore, it is 

important to have a model as good as the dataset, with at 

least similar performance. 

In both cases, the algorithms are based on ML 

techniques and rely on data of previous events to learn 

and provide their respective products. 

 

2. Prediction of risk level change for a CDM in a CA 

event 

In this section, machine learning techniques are 

applied to real conjunction analysis events, specifically 

aiming to assess whether or not an event is significant on 

the day of analysis. In this case, the machine learning 

model would estimate whether a given event could 

change risk level the next day, based on historical data 

from similar events. This can have the very relevant 

consequence that, if the risk level is expected to increase, 

the analysis of the possible collision is started earlier, but 

it is also interesting if the level of risk is expected to 

decrease, since then the operators and SST network effort   

could be devoted to other tasks. 

This problem can be modelled as a classification task in 

supervised learning, where the target labels are one of 

three options: risk level will increase, risk level will 

maintain, and risk level will decrease. The risk level is 

directly related to the probability of collision and is used 

operationally to classify CDMs in three levels, as shown 

in Table 2.1. 

Table 2.1. Definition of the different risk levels for a 

conjunction event. 

  

Info Low risk event that falls inside 

screening volumes. 

Warning Medium risk event that could lead to 

further monitoring if close to alert 

thresholds. 

Alert High risk event that must be closely 

monitored and that may require a 

manoeuvre. 

 

Thus, the idea is to compute the probability of a 

change in the risk level happening in the future of a 

conjunction event using current available CDMs for that 

event, and in which direction. Therefore, the model 

should take a CDM and return the probability that the 

event will increase, maintain or decrease its risk level. 

 

2.1 Dataset 

2.1.1 Starting dataset 

The dataset that is required to complete this task 

consists of a set of CDMs grouped by conjunction event. 

This dataset is available in the premises of S3TOC thanks 

to the continuous provision of conjunction analysis 

services to its users since 2016. These CDMs are also 

labelled using the definition shown before in Table 2.1 

for the RL. 
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The dataset used includes about 2.5 million CDMs, 

which can be grouped in 160.000 conjunction events 

(with a median of 8 CDMs per event, see Fig. 2.3). All 

these CDMs contain at least the mandatory fields 

described in [1]: identifiers, state vector and covariance 

matrix for the primary object and the secondary object, 

miss distance and time of closest approach, among other 

metadata. Since this data was already processed by the 

S3TOC CA service, it also included the associated risk 

level for each CDMs, the overall risk level of the event, 

the originator of the CDM, orbital regime, collision 

probability method, manoeuvrability status of both 

objects, etc. 

 

 
Figure 2.1. Distribution of CDMs per orbital regime over 

time.

 
Figure 2.2. Distribution of the time to TCA in hours per 

event risk level. 

 

Figures 2.1, 2.2 and 2.3 show some key statistics 

about the dataset. In the first one, one can see that the 

CDMs are distributed among five orbital regimes. Most 

of the CDMs are in LEO, but at the beginning of the 

S3TOC activities MEO dominated. This change is due to 

filtering CDMs for a pair of collocated MEO that 

generated too many CDMs when the risk of a conjunction 

was controlled. 

 
Figure 2.3. Number of CDMs per event. 

 

2.1.2 Feature engineering 

Feature engineering is the task where new 

information is created from the data, either combining 

features extracted from the dataset or using external data. 

In this case, only information already available in the 

provided dataset is going to be used to create new 

features. These features are, therefore, combinations of 

the provided data and serve the purpose of being more 

informative or more physically relevant. For example, 

the time to TCA is a very simple combination of the 

creation date and the TCA since it is just the difference 

between the two. 

Another example is that the covariance matrices in 

RTN for the primary (21 features) and secondary (21 

features) objects can be reduced to two numbers when 

they are combined, projected into the B-plane and 

diagonalised, as is usually done in CA for computing the 

PoC. These two numbers retain most of the information 

while reducing the dimensionality of the problem 

substantially. This projection was done following [2]. 

Similarly, in the field of orbital mechanics it is well 

known that the classical orbital elements are more 

informative than the position and velocity vectors, which 

are provided in the dataset since those are mandatory 

fields in a CDM. Semimajor axis, eccentricity and 

inclination for both primary and secondary are more 

relevant than the x, y and z components of the position 

and the velocity as they define the geometry and 

orientation of the orbital ellipse. 

In Figures 2.4 and 2.5 are represented the eccentricity 

and inclination versus the semimajor axis for the primary 

(blue) and secondary (orange) objects. LEO objects are 

distributed in all ranges of eccentricity and inclinations, 

whereas GEO are concentrated around zero degrees of 

inclination. The distribution of the cosine of the angle 

between the relative position vector in RTN and the 

relative velocity vector in RTN with origin in the primary 

object is shown in Fig. 2.6. Since most values are around 

the value 0, 1 and −1, it seems most of the CDMs 

correspond to objects going in or out of the direction of 

the secondary object.  
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Another interesting value that can be obtained from 

the position and velocity of the primary and secondary 

objects is the angle between both orbit planes (Fig. 2.7), 

computed as the angle between the two orbital angular 

momenta. It seems that GEO has small values of this 

angle, whereas in MEO and LEO the values are 

distributed between 0 and 180°. Note that the figure on 

the left is in log scale. 

 
Figure 2.4. Distribution of primary (P) and secondary (S) 

objects in terms of semimajor axis and eccentricity. 

 

 
Figure 2.5. Distribution of primary (P) and secondary (S) 

objects in terms of semimajor axis and inclination. 

 
Figure 2.6.  Distribution of the cosine of the angle 

between the relative position and velocity vectors. 

 

 
Figure 2.7. Distribution of the angle between the primary 

and secondary orbit planes per orbital regime. 

 

2.1.3 Final dataset 

The final dataset consists of a total of 1,820,258 

samples with the following 19 features: 

• sma__p/s: semimajor axis of the 

primary/secondary object 

• ecc__p/s: eccentricity of the primary/secondary 

object 

• inc__p/s: inclination of the primary/secondary 

object 

• angle_between_p_s_planes: angle between the 

primary and secondary orbital planes 

• t2tca_h: hours between the creation date and 

the time of closest approach 

• source: originator of the CDM 

• manoeuvrable__p/s: whether the 

primary/secondary object is manoeuvrable or 

not 

• area_pc__p/s: Actual area of the 

primary/secondary object 

• cos_angle_relative_rv: cosine of the angle 

between the relative position and velocity 

• relative_speed: relative speed 

• miss_distance: relative distance 

• cov_bplane_eig1: first eigenvalue of the 

covariance matrix projected onto the B-plane at 

TCA 

• cov_bplane_eig2: second eigenvalue of the 

covariance matrix projected onto the B-plane at 

TCA 

• autonomous: whether the CDM is autonomous 

or not 

The label risk_level_future_change is distributed 

(Fig. 2.8) as 1524567 for the value MAINTAIN, 264127 

for INCREASE and 31564 for DECREASE. The label 

was computed considering the difference between the 

risk level of the last CDM of the event and the evaluated 

CDM. 
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Figure 2.8. Distribution of samples per class. 

 

2.2 Methodology 

 

2.2.1 Dataset selection 

The dataset was split in two parts, the training set and 

the test set. The training set is used during the fitting 

phase, whereas the test set is used to evaluate the trained 

model, since that data would not be used during the 

training and therefore the goodness of the model to work 

on unseen data is tested. This split is done considering a 

date. All data before 1st March 2021 is used for training. 

This gives about 76% of the data for training. 

Since the different classes in the target variable are 

not approximately evenly distributed, a simple 

upsampling is done to augment the number of samples 

for the INCREASE and DECREASE categories to match 

the number of samples in the MAINTAIN class. For a 

first study and a demonstration of capabilities, this 

technique seems sufficient, although it could possibly be 

improved. 

 

2.2.2 Dataset transformation 

Features need to be scaled to improve the 

performance of certain algorithms, like the ones using 

gradient descent as optimizer (like the gradient-boosting 

family) or the ones based on distance. In this activity, the 

scaling is done by centring the values around the median 

and scaled them using the interquartile (IQR), that is, the 

range between the 1st quartile (25th percentile) and the 

3rd quartile (75th percentile). 

Other scalers available make use of the mean and the 

standard deviation, or the minimum and maximum values. 

These scalers are more sensitive to outliers, whereas the 

scaling based on quantiles is more robust. 

 

2.2.3 Algorithm and hyperparameter selection 

This problem as mentioned above, is a multi-label 

classification problem in the field of supervised learning. 

Tree-based ensemble learning algorithms have 

demonstrated to perform well in tabular dataset [3]. 

When adding their good computational performance, 

simplicity and ease of use, they appear to be good 

candidates to solve this problem.  

Ensemble learning consists of a set of "weak" 

learners, which are trained together and their results are 

considered at the same time to create a "strong" learner. 

An example of this kind of weak learner is a Decision 

Tree, which is a very simple model (a set of if-else rules 

whose thresholds are computed automatically). 

Depending on how a set of these Decision Trees is trained 

(rules of node splitting, voting, etc.), different ensemble 

learning algorithms arise. 

The following algorithms [ 4] from this family 

are going to be considered: 

• Random Forest: using a set of decision trees, each 

built from a sample drawn with replacement and 

at each node the best split is found using 

information of a subset of features. Then, the 

prediction of all trees is averaged for the result of 

the ensemble. 

• Extremely Randomized Trees: similar to RF, but 

the splits are selected from the best of a set of 

random splits, increasing the randomness of the 

process. 

• Gradient Boosting: gradient boosting on decision 

trees. Similar to random forest, but each decision 

tree of the ensemble is added and trained in 

conjunction to the previously trained decision 

trees, using the remanent errors of the previous 

fitted estimators. 

Each algorithm has its own hyperparameters, that is, 

certain aspects of the algorithm or the model during the 

learning process. 

They refer to the model selection part in the ML 

modelling process. For example, the selection of an 

algorithm or the number of estimators using in an 

ensemble learning algorithm are hyperparameters of the 

ML model. Another typical example is the number of 

layers and the number of weights per layer in a neural 

network. 

Optuna is "an open source hyperparameter 

optimization framework to automate hyperparameter 

search", that is to say, a library that can be used to look 

for the best combination of hyperparameters to the 

problem for a selected metric. The hyperparameter space 

to use in the search and the score are defined by the ML 

engineer. The hyperparameters considered can be found 

in Table 2.2. 

 

Table 2.2. Hyperparameters considered for tuning. 

Hyperparameter Possible values Comment 

classifier_obj RandomForestClassifier, 

ExtraTreesClassifier, 

LGBMClassifier, 

XGBClassifier 

 

n_estimators [20, 200], logarithmic  

max_depth [2, 32], logarithmic Controls the 

depth of the 

decision 

tree. 

ccp_alpha [0, 1], logarithmic Only 

applicable 

to RF and 

ExtraTrees 
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algorithms. 

It controls 

the post-

complexity 

pruning. 

learning_rate [0.01, 1], logarithmic Only 

applicable 

to gradient 

boosting 

algorithms. 

 

The score used is the macro average recall in the test 

set, which is also the average of the diagonal of the 

multiclass confusion matrix once it is normalized by the 

number of true samples of each class. 

 

2.2.4 Model validation 

The confusion matrix, in binary classification, is a 

table where the predicted values are put against the actual 

values. This matrix is better the higher the values in the 

diagonal are: 

 

 Predicted values 

 Negative Positive 

Actual 

values 

Negative 
True 

Negatives 
False 

Positives 

Positive 
False 

Negatives 
True 

Positives 

 

The accuracy is the ratio of correctly classified 

samples to the total number of samples. The precision 

measures the ability of the classifier not to label as 

positive a sample that is negative. It is also known as 

positive predictive value. The recall or sensitivity is, 

intuitively, the ability of the classifier to find all the 

positive samples. It can be viewed as the probability that 

a successful request is labelled as such. The F1-score is a 

combination of the previous two. 

 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

 

Precision = TP / (TP + FP) 

 

Recall = TP / (TP + FN) 

 

F1-score = 2 · precision · recall / (precision + recall) 

 

Since these metrics are ratios, they are better the 

closer they are to 1 because that means that the fraction 

of FP and/or FN is smaller. 

 
* https://scikit-learn.org/ 
† https://lightgbm.readthedocs.io/ 

These metrics can be extended to multiclass 

classification by considering a binary problem for each 

class, i.e., INCREASE vs NOT INCREASE 

(DECREASE + MAINTAIN). These combinations can 

then be averaged to obtain overall performance metrics. 

 

2.2.5 Open-source tools 

Well-known and validated solutions in the machine 

learning industry were used for the development and 

training of the models. The Python libraries used 

implement the aforementioned algorithms and provide 

the necessary framework. The following libraries have 

been used for the development of this activity: scikit-

learn*, optuna†, lightgbm‡ and XGBoost§. 

 

2.3 Results 

The Optuna framework found the combination of 

hyperparameters collected in Table 2.3 that provides the 

best score in all trials, with an average macro recall in the 

test set of approximately 0.74. Other hyperparameters of 

the algorithm are left with the default values included in 

the framework. 

 

Table 2.3. Final results of the hyperparameter 

optimization with Optuna. 

Hyperparameter Value 

classifier_obj LGBMClassifier 

learning_rate 0.0926520740299368 

max_depth 5 

n_estimators 55 

ccp_alpha N/A 

 

The selected algorithm is taken from the Light 

Gradient Boosting Machine library. This algorithm is 

based on an ensemble of decision trees and implements a 

variation of the gradient boosting training technique. 

The dataset used for the evaluation, as stated in 

section 2.1, corresponds to 25% of the input data. Only 

the CDMs after March 1st, 2021 are going to be used for 

evaluation and validation. The table below compiles a 

series of metrics for both the train and test set. The 

similarity in those metrics means that the model is able 

to learn from the training set and can generalise and 

extrapolate that behaviour to unseen data samples. In this 

case, CDMs of new events. The closer these metrics are 

to 1, the better the model is performing the classification 

task. 

 

Table 2.4. Classification metrics per class applied to the 

training and test set. 

TRAIN SET 

  precision recall F1 # samples 

DECREASE 0.78 0.82 0.80 1518681 

‡ https://xgboost.readthedocs.io/ 
§ https://optuna.org/ 

https://scikit-learn.org/
https://lightgbm.readthedocs.io/
https://xgboost.readthedocs.io/
https://optuna.org/
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MAINTAIN 0.85 0.73 0.79 1520159 

INCREASE 0.78 0.85 0.81 1519919 

accuracy 0.80 4558759 

macro avg. 0.80 0.80 0.80 

weighted avg. 0.80 0.80 0.80 

TEST SET 

  precision recall F1 # samples 

DECREASE 0.07 0.86 0.13 7425 

MAINTAIN 0.91 0.64 0.75 417942 

INCREASE 0.57 0.72 0.64 148279 

accuracy 0.66 573646 

macro avg. 0.52 0.74 0.50 

weighted avg. 0.81 0.66 0.71 

 

Figures 2.10 and 2.11 present the confusion matrices 

for both the training set and test set, respectively. Again, 

the similarity between both confirms that there is no 

under- or overfitting in the model and is able to generalise 

to new CDMs. Even though the performance is not 

perfect and there is room for improvement, these results 

are very promising for a system of these characteristics. 

As a summary, in the test set: 

• 86% of the predicted risk-level-decreasing CDMs 

are actually CDMs in events that will decrease their 

risk level in the future. This number being that high 

is good for the performance of the model, since the 

CA operator can trust when the model is saying that 

the risk level will decrease with confidence 

• 64% of the predicted risk-level-maintaining CDMs 

are actually CDMs in events that will maintain their 

risk level in the future 

• 72% of the predicted risk-level-increasing CDMs 

are actually CDMs in events that will increase their 

risk level in the future 

• 17% of the CDMs categorised as risk-level-

maintaining are actually CDMs that will increase 

their risk level in the future. These results should be 

improved, since that would mean that the operator 

might ignore 17% of the CDMs because of this. 

Other ratios shown in the confidence matrix are not 

worrisome since they are conservative: the demand more 

attention from the CA operator than it might necessary. 

 
Figure 2.9. Confusion matrix of the final model applied 

to the training set. 

 
Figure 2.10.  Confusion matrix for the final model 

applied to the test set. 

 

The receiver operating characteristic (ROC) curve (Fig. 

2.11) shows the trade-off between sensitivity (or TPR) 

and specificity (1 – FPR). Classifiers that give curves 

closer to the top-left corner indicate a better performance. 

This curve is displayed below. Here is shown that the 

model can separate better the DECREASE class from the 

other classes than the other classes. This is in line with 

what was shown in the confusion matrix. 
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Figure 2.11. Multi-class ROC curve for the test set. 

 

Finally, inspecting the model is an interesting task to 

do. Explainability in artificial intelligence is difficult: 

most models behave like black boxes and it has to be 

done by modifying the inputs to study the behaviour of 

the model. For example, taking from the test set only the 

samples of autonomous CDMs and non-autonomous 

CDMs and computing the confusion matrix for each 

yields Fig. 2.12. It seems that autonomous CDMs have 

fewer clear patterns for risk-level-maintaining CDMs. 

Further studies should be done to fully understand the 

model. 

 
Figure 2.12. Confusion matrix on the test set, for 

autonomous and non-autonomous products. 

 

3. State vector propagation enhancement 

This section proposes a methodology to enhance 

orbital propagation applied to conjunction events using 

machine learning techniques. After a sensor has obtained 

observations of an RSO, its position in space and the orbit 

on which it is located are estimated. Using this initial 

estimate and using a physical model-based orbit 

propagation method, the object's state vector is 

propagated to a future epoch (the TCA). Both the initial 

estimate and the orbit propagator introduce errors into the 

estimate of the final RSO state vector. The ML-based 

model is thus introduced to directly alter the propagation 

of the final satellite state so that the result obtained is 

closer to reality. There are examples in the literature of 

this very problem [5] [6]. However, these authors used 

support vector machines. In this work a more innovative 

approach is proposed using neural networks. 

 
Figure 3.1 State vector propagation enhancement 

diagram [5] 

It should be noted that the presented method is not 

influenced by the initial position of the RSO, but only 

uses the propagation based on the initial estimate (already 

included in a CDM) and other information about the 

satellite and its environment to reduce the error of the 

final estimate, without distinguishing between the causes 

of the error. 

The overall objective of the method is to yield a 

correction to the to the propagated state vector provided 

in a particular CDM. This CDM has additionally a TCA 

computed with the best-known data at the time of 

publication (TCA1 in Figure 3.2). To provide a known 

truth of the state vector, the last CDM in the event chain 

is used. However, this last CDM contains a different 

TCA as the orbit of the object is, in principle, different 

(TCA2 in Figure 3.2). To evaluate the correction to the 

state vector computed by the model, the state vectors of 

both CDMs must be propagated to the same epoch. To 

that end, the state vector of the last CDM is propagated 

from TCA2 to TCA1. 
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Figure 3.2 Propagation of ground truth state vector 

 

 

3.1 Dataset 

The dataset used in the current project consists of 

approximately 152.000 CDM files, coming from 

operator/owner users from EUSST and obtained through 

SpaceTrack. This dataset is separate from that presented 

in section 2.1. The period covered by the measurements 

in the data files is from 2016 to 2020, while the 

information and data in the files cover a wide variety of 

types of space objects following a diverse set of orbits. 

 The CDM files were received in XML format and 

they present information about a close approach event in 

which two objects, a target and a chaser, are involved. 

The focus of this project was put on the secondary object 

in each conjunction, as the number of primary objects is 

lower and less diverse. However, in the case of secondary 

objects, they add up to a total of 2223 individual objects, 

from which can be distinguished 1631 debris, 87 

payloads, 64 rocket bodies and 441 objects whose type is 

classified as unknown. From all these objects, only 101 

of them are known to be manoeuvrable, although, in the 

observations documented in the CDM files received, 

none of the space objects used their propulsion system to 

perform any sort of manoeuvre.  

Regarding the models used to perform the state vector 

propagations, it is noted that the time period for 

propagation is no longer than 9 days. The reference frame 

in which the measurements were taken was ITRF and 

there have been used a total of 4 gravity models, which 

are comprised of series of geopotential models. The 

aforementioned models are: EGM-96: 36D 36O, EGM-

96: 24D 24O, 36Z, 36T: 36D 36O and an additional 

custom one. By far the most used is the first one, being 

considered in more than 151.000 of the CDM files. In 

addition, the atmospheric density model used for the state 

vector propagation is JBH09, which also includes a solar 

storm prediction model. The N-body gravitational 

perturbations used are the Moon and the Sun in almost all 

cases, as well as information about solar radiation 

pressure and earth tides. In terms of data measurements, 

the orbit determination process was based on average on 

93 measurements. In addition, some other information 

about the space objects is known, such as their cross-

section area, which ranges from 0.0005 to 24 square 

meters, its specific energy dissipation rate, the coefficient 

of the perturbation of the object due to atmospheric drag 

or due to solar radiation pressure. 

 

 
Figure 3.3 Distribution of semi-major axis of the 

secondaries 

In terms of orbit shapes, the primary objects in the 

CDM files have polar orbits, and since the probability of 

conjunction is highest in the along-track direction, with 

objects of similar orbits, it is highly probable that the 

secondary objects also present polar orbits. Indeed, this 

is the case, as the number of orbits for the secondary 

objects with inclinations lower than 60 degrees is lower 

than 1000, meaning the rest of 151.000 CDM files 

presenting objects with inclinations between 60 and 90 



73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.  

Copyright ©2022 by the International Astronautical Federation (IAF). All rights reserved. 

IAC-22-A6.2.4                           Page 10 of 15 

degrees, indicating polar orbits. The altitude of the orbits 

is also not very diverse, with only about 1000 orbits being 

above 2000 kilometres above the Earth’s surface, 

meaning beyond the Low Earth Orbit threshold. In 

addition, in terms of eccentricity, the orbits are close to 

being circular, most of them having eccentricity levels 

below 0.05. 

 
Figure 3.4 Distribution of orbital inclination of the 

secondaries 

In terms of the components of the propagated state 

vectors, meaning the cartesian components for the 

position and velocity, the data is normally distributed in 

the cases of the X and Y components, with most values 

being very close to 0 and ranging from approximately -

7000 km to +7000 km. In the case of the Z component, 

since most conjunctions seem to happen around the poles, 

the values on this axis are usually around +/- 7000 km. 

 

3.2 Methodology 

This section covers the methods and techniques used 

to train the ML models used for state vector propagation 

correction. 

3.2.1 Model Architecture 

Tackling the problem at hand is well suited to a feed 

forward deep neural network. In this work the overall 

architecture used can be seen in Figure . 

 

 
Figure 3.5 Model architecture 

 

 

In this architecture, a set of inputs from a CDM is 

transformed into the prediction of the correction to the 

state vector as output. While the diagram shows the 

overall architecture of the model, several hyper-

parameters were used to define the specific properties of 

each model trained. In this case the hyper-parameters 

available are: 

• Number of intermediate layers. 

• Number of neurons per intermediate layer. 

• The activation function of each layer. 

• The use or not of a dropout. 

• Loss function. 

• Optimization algorithm. 

• Initial learning rate of the optimizer.  

 

A hyper-parameter search was performed by creating 

multiple architectures with different such parameters and 

comparing their performance to determine the best 

configuration. The selection was made performing a 

random search and the performance of each 

configuration is determined using the validation dataset 

to choose the model best able to generalize the 

relationship between input and target parameters. 

 

3.2.2 Dataset Pre-processing 

As with any ML algorithm, at least two datasets 

(ideally three) are required: the training dataset, the 
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dataset used both for validating training performance and 

for comparing hyperparameter performance and the test 

dataset, used to determine the ability of the algorithm to 

generalize on a yet unseen dataset - the latter dataset is 

used in the determination of model performance. 

In this case, the way in which the datasets were 

chosen from the complete dataset is as follows: 

• Training data set: 39.2% 

• Data set for validation: 30.8% 

• Test data set: 30% 

The CDMs were randomly divided into the three 

datasets keeping events together, with the percentages 

chosen from experience. 

In order to facilitate training, the data must be scaled 

before being fed into the model. A variety of scalers were 

used as appropriate. For relatively uniform a linear 

scaling to a range of 0-1 was enough. For variables with 

more complex distributions, quantile transformer or 

logarithmic based transformers were employed.  

Regarding the features used to generate the 

propagation correction, all of them are available within a 

CDM except for the F10.7 index. No features that regard 

the primary object specifically are used. All features and 

their corresponding scalers are presented in Table 3.1. 

  

Table 3.1 Features and scaler used 

Feature description Scaler used 

Time to TCA Quantile transformer 

Propagated RSO position at 

TCA 

Quantile transformer 

Propagated RSO velocity at 

TCA 

Scaling to range 0-1 

Semimajor axis Quantile transformer 

Eccentricity Log transformer 

Inclination Quantile transformer 

RAAN, argument of 

perigee and true anomaly at 

TCA 

Scaling to range 0-1 

Number of observations 

used 

Yeo-Johnson 

Residuals accepted for 

orbit determination 

Yeo-Johnson 

RMS of residuals Yeo-Johnson 

Effective RSO area Yeo-Johnson 

Drag coefficient to mass 

ratio 

Yeo-Johnson 

Solar radiation disturbance 

coefficient to mass ratio 

Yeo-Johnson 

Specific energy dissipation 

rate 

Yeo-Johnson 

Covariance matrix 

elements at TCA 

Quantile transformer 

F10.7 index Quantile transformer 

 

3.2.3 Training methodology 

In this section, the process followed to train the 

models is discussed. The main objective is to train 

models that are free from each individual dataset bias and 

that are able to generalize outside the dataset they are 

trained in. 

To that end, the model is trained using early stopping. 

Early stopping is a technique by which the model is 

evaluated on a small section of the training set not used 

for actual training. If the loss on that subset did not 

decrease for a set number of epochs the model is 

considered trained.  

Trained models are then evaluated on the validation 

set. This allows for the comparison of different sets of 

hyper-parameters. The model with the best performance 

on the validation set is chosen as the best set of hyper-

parameters. 

Finally, the actual performance of the model is 

evaluated in the test set which had not been used until this 

point. This overall process minimises the risk of biases 

towards the training set, by choosing models based on the 

validation set performance, and towards the validation 

set, by obtaining the final performance of the model with 

the test set. 

 

3.3 Results 

The following subsections show the absolute and 

relative error distributions of the ML model and the 

classical propagator, in the RTN coordinate system. The 

origin of the coordinate system is taken to be the centre 

of mass of the RSO at time TCA of the input CDM, i.e., 

the origin is at the point that determines the actual 

position of the satellite at the time for which the orbit 

propagation is done. The direction of the R axis is the 

same as the direction of the satellite position vector, the 

direction of the T axis is in the direction of its velocity, 

and the direction of the N axis is given by the vector 

product of the R and T axis vectors. 

In order to provide a measure of the performance of 

the model, a baseline model is provided. This baseline is 

a null model that always yields a correction of zero. That 

is in effect, the best state vector available to an operator 

without the use of the ML algorithm presented here. 

This coordinate system is used in error analysis as it 

illustrates in a more intuitive way the behaviour of ML 

model predictions than the geocentric coordinate system 

in which the model makes its predictions. As is also 

shown in the following subsections, the errors on the T-

axis direction in the case of the classical predictor are the 

largest, being two orders of magnitude larger than the 

errors on the other two axes. This is most likely due to 

uncertainties in the modelling of the drag force, since it 

acts in the direction of the velocity (i.e., the T-axis), in 

the opposite direction. This tendency for model error 

cannot be observed using the geocentric reference system 

as a benchmark, which is why the analysis presented in 

this section was carried out. 
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3.3.1 Radial position component performance 

This subsection shows the performance of the model 

against that of the baseline in the radial direction for the 

position components of the state vector. Figure  shows 

the comparison of the distribution of errors between the 

model and the baseline. The model yields smaller errors 

than the baseline. Not only is the 95th percentile (upper 

whisker in the plot) lower, thus providing a reduction of 

the largest error expected. The median value is also 

smaller. 

 

 
Figure 3.6 Distribution of baseline and model errors 

in radial position in kilometres. 

 

One can also pay attention to the performance as a 

function of the time to TCA of the prediction as shown in 

Figure . 

 
Figure 3.7 Model performance in radial position as a 

function of time to TCA 

 

Again, the model gives an improvement of ≈20% 

until 2 days to TCA at which point performance is equal 

to the baseline until the last point in the plot where the 

baseline is better than the model. However, at this point 

the correction is not so valuable as the propagation is 

already very close to the true value. 

 

3.3.2 Tangential position component performance 

This subsection compares the performance of the 

model against the baseline in the tangential direction only 

considering the position. 

 
Figure 3.8 Distribution of baseline and model errors 

in tangential position in kilometres. 

 

From Figure , the model outperforms the baseline 

significantly, both in the upper bound (95th percentile) 

and the median value. This result is particularly 

interesting as the majority of the uncertainty of the error 

resides in the tangential direction.  

 
Figure 3.9 Model performance in tangential position 

as a function of time to TCA 

 

From Figure , the model has a distinct advantage over 

the baseline throughout the whole event chain. 

Maintaining a 30% error decrease during most of the time 

span shown. 

 

3.3.3 Cross-track position component performance 

In this section, the cross-track component of the 

position error is analysed. First, the distribution of errors 
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can be seen in Figure . The model outperforms the 

baseline in all significant points of the plot. Particularly 

in the 95th percentile upper whisker. This can also be seen 

in Figure  where the model outperforms the baseline by a 

small margin except for at the very closest time to TCA 

where errors are low in general. 

 

 
Figure 3.10 Distribution of baseline and model errors 

in cross-track position in kilometres. 

 
Figure 3.11 Model performance in cross-track 

position as a function of time to TCA 

 

3.3.4 Radial velocity component performance 

This subsection covers the analysis of the results of 

the model against the baseline for the velocity component 

in the radial direction. 

 

The best model found offers significant 

improvements over the baseline throughout the 

considered range of time to TCA. As seen in figures 3.12 

and 3.13. 

 

 
Figure 3.12 Distribution of baseline and model errors 

in radial velocity in kilometres per second. 

 
Figure 3.13 Model performance in radial velocity as 

a function of time to TCA 

 

3.3.5 Tangential velocity component performance 

This subsection shows the performance comparison 

between the model and the baseline in the tangential 

direction for the velocity of the RSO. 

In this case, the best model found actually performs 

worse than the baseline in both plots shown Figure 4 and 

Figure . Therefore, it is not advisable to employ the 

model for this particular case. 
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Figure 3.14 Distribution of baseline and model errors 

in tangential velocity in kilometres per second. 

 

 
Figure 3.15 Model performance in tangential velocity 

as a function of time to TCA 

 

3.3.6 Cross-track velocity component performance 

This subsection analyses the performance given by 

the model in the cross-track velocity direction. 

This is the only direction for the velocity in which the 

model offers an advantage over the baseline as seen in 

Figure . In fact, from Figure , this increased performance 

is achievable at all times to TCA available in the test 

dataset. 

 
Figure 3.16 Distribution of baseline and model errors 

in cross-track velocity in kilometres per second. 

 
Figure 3.17 Model performance in tangential velocity 

as a function of time to TCA 

 

4. Conclusions 

This study has demonstrated the applicability of ML 

algorithms and modelling techniques to real conjunction 

analysis scenarios obtained from operational context of 

SSA in S3TOC for two tasks, prediction of risk level 

change and state vector propagation enhancement.  

For the first task, its applicability has been 

demonstrated successfully in the prediction of risk 

change in a CDM. This functionality can be useful if it is 

integrated into an operational conjunction analysis tool 

that can help operators in their daily work. It was 

demonstrated that the system is capable of predicting 

whether an event, using information from a single CDM, 

would change its risk level, especially if it would 

decrease (86%) or increase (72%). 

In the course of this study, several problems have 

been encountered which have been solved along the way 

at data ingestion and pre-processing level because too 

many CDMs where incomplete, missing non-mandatory 

data like the probability of collision, which could have 

been useful and had to be discarded as a feature to the 

model. Either way, only fully healthy data has been used 
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being the main problem to discard bad data. In machine 

learning projects, usually the preparation of the dataset 

takes the most time of the whole process. In any case, 

since it is a study to demonstrate the capabilities of ML 

to reduce the number of manual operations in CA, there 

are other possible improvements in the process. For 

example, the upsampling technique used to balance the 

training set, or the generation of other interesting features 

related to time series trending. During the training, the 

inclusion of a validation set extracted from the training 

set as part of a cross-validation set might improve the 

quality of the training processes. 

The second problem tackled has shown great promise. 

A reduction of the propagation error can be achieved in 

the bast majority of cases. Often with significant 

decreases of ≈ 30%. This has been achieved with a 

limited dataset and using singular CDMs as input. 

Therefore, this work could be generalized outside SSA 

and be applied generally to reduce the errors committed 

by propagators. By using an initial propagation as input 

to the model, the model was allowed to focus on the 

trends found the propagation errors. In this way, the 

known physics that have an effect on the trajectory of the 

RSO need not be learnt by the model which reduced 

computational complexity greatly. 

Finally, the deployment of such models could be 

considered, but always taking into account a feedback 

loop to complement it and verify its results. ML 

algorithms require constant supervision, update and 

validation to ensure that the results are still consistent 

with the reality. The mere inclusion of such models can 

change the nature of the data since the focus of the 

operators might change. Further developments and 

analysis would be required to ensure that worrisome 

biases are not introduced into an operational environment. 

 

5. Future work 

In this work, it has been demonstrated that ML can be 

applied to conjunction analysis. However, several 

improvements could be made to either of the two 

applications to possibly increase the performance and 

reliability further. 

For the first task, there are two possible places where 

to do further developments and research: the dataset and 

the hyperparameters of the model. The dataset could be 

improved removing corner cases that might not be useful 

to the model and might create a bias towards 

conjunctions that is not usually treated as such, like flight 

formation or micro-constellations. In the future, active 

debris removal and in-orbit servicing will need to be 

taken into account for the same reasons. In the side of the 

dataset, the resampling method used is very basic and 

could be substituted by a more advanced one, so the 

dataset does not use exactly the same samples. Secondly, 

the training and validation of the model can be improved 

by adding new features considering the history of the full 

event (or even switching to a model prepared for time 

series), as well as using cross-validation during the 

hyperparameter tuning, so a better set of hyperparameters 

is found, one that improves the quality of the validation 

metrics. 

After the second task, several possibilities for future 

development are possible. First, a lack of performance for 

velocity components was observed as compared with 

positional components. To that end, further hyper-

parameter search could prove useful in improving 

performance. Simultaneously, different ML architectures 

could be used. For instance, sequential models could be 

used to consider the whole sequence of CDMs instead of 

just the latest one. Providing additional information 

should, theoretically, improve overall performance.  

Finally, it would be of interest to test the model 

outside the dataset used for this work. This dataset was 

dominated by LEO polar orbits. Evaluating the model for 

other regimes and/or orbit types would increase the 

validity of the results presented. 
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