DESIGN AND TEST OF AN OPTICAL DAYLIGHT TRACKING CAPABILITY FOR LEO, MEO, GEO

73rd International Astronautical Congress (IAC), Paris
22/09/2022

Marine Pyanet, Théo Joffre, Laurent Hennegrave, Gaëtan Eyheramono, Sébastien Vourc'h

Vincent Morand, Juan-Carlos Dolado Perez, Pascal Richard, Megane Diet
CONTEXT

• **GEOTracker© network**: 14+ optical tracking and survey sensors around the world

• **Optical sensors constraints**
 - Clear sky
 - Station at nighttime
 - Object illuminated by the Sun

• **Limited observation opportunities**, in particular for LEO objects

• **Stations overloaded at night**, unused during the day

→ **ArianeGroup investigates the feasibility of daytime observation**
CHALLENGE & SOLUTION PROPOSED

- Observing at daytime → sensor saturation
- Solution proposed

Switch to SWIR (Short Wave InfraRed) + Adap the acquisition strategy and post processing

- Short exposure images cumulation

SNR (Signal to Noise Ratio) improvement

→ The idea is to experiment the solution on existing observation station
EXPERIMENTAL SETUP

Optical tracking station
Including COTS SWIR camera

Acquisition strategy

Image processing algorithms (internal development)

Raw images

Image pipe

Angular measurements (RA, DEC)
OPTICAL CONFIGURATION #1

GEO campaign configuration

- 60cm Newton telescope
- Cooled InGaAs SWIR camera
- Waveband: 0.9µm – 1.7µm
- Equatorial mount (low tracking speed)
- St Michel L’Observatoire (France)
OPTICAL CONFIGURATION #2

MEO/LEO campaign configuration

- 35cm COTS telescope
- Cooled InGaAs SWIR camera
- Waveband: 0.9µm – 1.7µm
- Alt-az mount (high tracking speed)
- Issac (France)
EXPERIMENTATION PLAN

GEO

- Choice of 10 satellites visible from the station
 - Various magnitudes (as estimated by GEOTracker© network in visible wavelength)
 - Various pointing directions
 - Various types of platforms
 - Sequential observations for solar elevations between -15° and +15° (dawn and dusk)

MEO

- Observation of GNSS satellites and rocket bodies, depending on opportunities
- Solar elevations between -15° and +15° (dawn and dusk)

LEO

- Any object in visibility of the station
- Full daytime
RESULTS ON GEO SATELLITES

Detection proved for solar elevation up to 14,7° (for bright satellite)

Identification of most favorable geometric configurations

- At dawn for satellite at azimuth >180°
- At dusk for satellite at azimuth <180°

Zoom on image obtained of GEO satellite for solar elevation = 14,7°

SNR vs solar elevation – same satellite
RESULTS ON MEO SATELLITES

Detection proved for solar elevation up to -4°
- MEO satellites are usually fainter than GEO
- Instrument used is less sensitive

No obvious trend on SNR variation
- Intrinsic magnitude of the objects and influence of phase angle not taken into account
- No magnitude reference for objects observed

→ Possibility to extend the observation periods by a few hours per day
RESULTS ON LEO SATELLITES

Detection proved for solar elevation up to 30° (close to maximum solar elevation in winter)

- LEO satellites are usually bright
- Good results obtained, even on satellites not flagged as “brightest”

Sensitivity is difficult to assess precisely

- No magnitude reference available for the objects observed
- More tests would be required to assess the performance

→ Possibility to observe 24/24
CONCLUSION & WAYFORWARD

Daytime detection proved with COTS-based station and appropriate image processing

→ Ability to extend the observation spans by few hours in MEO/GEO, 24H/day in LEO

→ Strong interest to optimize optical network performances, especially in LEO

Performances could be improved with upgraded station

- IR optimized telescope
- Auto-exposure strategy
- Image processing optimization

Definition and industrialization of optimized IR station already in progress

- First IR stations to be included in GEOTracker© network in 2023
ACKNOWLEDGEMENTS

This work has been partially funded by the European Space Surveillance and Tracking (EU-SST) program. The EU SST activities have received funding from the European Union programmes, notably from the Horizon 2020 research and innovation programme under grant agreements No 952852, No 785257, No 760459, No 713630 and No 713762.

Thank you for your attention!

marine.pyanet@ariane.group
ANNEX 1 : CAMERA CHARACTERISTICS & OPTICAL CONFIGURATIONS

<table>
<thead>
<tr>
<th></th>
<th>COTS SWIR camera</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (pixels)</td>
<td>640x512</td>
<td>0,23x0,20</td>
<td>0,15x0,12</td>
</tr>
<tr>
<td>Pixel pitch (µm)</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RON (e-)</td>
<td><30</td>
<td>1,37</td>
<td>0,84</td>
</tr>
<tr>
<td>DC (e/p/s)</td>
<td><600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max framerate (fps)</td>
<td>600</td>
<td>60</td>
<td>35,5</td>
</tr>
<tr>
<td>FOV (°)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution (arcsec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collection diameter (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>