Operational application of an adaptive beamforming approach for angular track estimation in survey radars

M.F. Montaruli, M.A. De Luca, **P. Di Lizia**, M. Massari, S. Tebaldini, G. Bianchi, G. Pupillo, G. Naldi, D. Cutajar, A. Magro, K. Zarb Adami

THUR R

Introduction

Current in-orbit overcrowding [1]

- 8800 satellites still functioning
 - 35340 tracked space debris
- >130 millions estimated space debris

On-ground means to mantain space objects catalogue, with tracking and survey sensors

Fragmentation

S

CZ-6A RB and H-2A DEB fragmentations:

- CZ-6A RB explosion: November 12°, 2022
- H-2A DEB: November 17°, 2022
- Evidence of mutual implication [2]

[1] ESA website, Space debris by the numbers, Access 21/11/2023
[2] M.F. Montaruli et al., Assessment of the CZ-6A RB and the H-2A DEB fragmentation events, EUCASS 2023

OUTLINE

BIRALES data processing

MATER - Catalogued object

MATER - Uncatalogued object

Operations – Real observations

Conclusions

O1 BIRALES DATA PROCESSING

POLITECNICO MILANO 1863

BIstatic Radar for Leo Survey (BIRALES)

BIRALES: multibeam approach

Static beamforming [3]

[3] *M. Losacco et al., Initial orbit determination with the multibeam radar sensor BIRALES, Acta Astronautica, 2020*

BIRALES: multibeam approach

Static beamforming [3]

[3] *M.* Losacco et al., Initial orbit determination with the multibeam radar sensor BIRALES, Acta Astronautica, 2020

BIRALES: multibeam approach

Static beamforming [3]

[3] *M.* Losacco et al., Initial orbit determination with the multibeam radar sensor BIRALES, Acta Astronautica, 2020

BIRALES: adaptive beamforming approach

Adaptive beamforming

BIRALES: adaptive beamforming approach

MUSIC - MUltiple SIgnal Classification ^[4]

[4] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation,

BIRALES: adaptive beamforming approach

MUSIC - MUltiple SIgnal Classification ^[4]

[4] R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE Transactions on Antennas and Propagation,

DOA ambiguity problem

DOA solution is unique if distance between antennas is less than $\lambda/2$

Presence of multiple DOA estimates

02 MATER CATALOGUED OBJECT

POLITECNICO MILANO 1863

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

Numerical Validation

- 899 NORAD LEO passages
- Entire FoV involved
- Accuracy: 1e-03 1e-02 deg

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

03 MATER UNCATALOGUED OBJECT

POLITECNICO MILANO 1863

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

Real track

DOA estimate

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

Exploit additional data

Signal processing approach

Numerical Validation

Entire FoV involved

Nominal and sensitivity analysis

Accuracy: 1e-03 – 1e-02 deg

Statistical approach

04 OPERATIONS REAL OBSERVATIONS

POLITECNICO MILANO 1863

Operations

Previous signal processing chain:

- Still designed for static beamforming
- Very noisy covariance matrices

Only large objects with small SR

Accuracy: 1e-02 - 1e-01 deg

April 28°, 2021

[5] M.F. Montaruli et al., Adaptive track estimation on a radar array system for space surveillance, Acta Astronautica, 2022

Operations

Operations

- December 2°, 2022
- Target: SARAL (norad ID 39086)
- Radiosource: Cassiopea-A

Operations – new processing pipeline

- Split the receiver bandwidth in multiple channels
- Signal power increase enhances the detection rate and the angular track accuracy
- Multiple sources simultaneously detected are processed separately

Operations – new processing pipeline

- ▶ July 24°-28°, 2023
- The target was maneuvering during the observation
- Uncatalogued case

Operations – validation

Calibrator

S

► ILRS and DORIS catalogue

46 observations of LEO satellites

	$\Delta \gamma_1$	$\Delta \gamma_2$
Catalogued	9.6e-02°	1.5e-01°
Uncatalogued	9.8e-02°	1.5e-01°

Error will be reduced by compensating the elevation-depending distortion (ongoing activity)

POLITECNICO MILANO 1863

Conclusions

To recap:

- Architecture defined
- Validation campaign
- First operational involvements in SST services
- Multiple sources simultaneously detected (fragmentations, proximity operations)

Next steps:

- Compensation of the elevation-depending distortion
- Operational architecture implementation
- RSO characterization
- Admissible Regions approach to solve ambiguity in DOA estimation

MATER - Admissible Region Approach

[6] G. Tommei et al., Orbit determination of space debris: admissible regions, Celestial Mechanics and Dynamical

Operational application of an adaptive beamforming approach for angular track estimation in survey radars

THANK YOU FOR THE ATTENTION!

ANY QUESTION?

Acknowledgments

Research performed within the **European Commission** Framework Programme H2020 and Copernicus "SST Space Surveillance and Tracking" contracts N. 952852 (2-3SST2018-20) and N. 237/G/GRO/COPE/16/8935 (1SST2018-20) with further support from the **Italian Space Agency** through the grant agreement n. 2020-6-HH.0